HyperSensitive

HyperSensitive

This problem can be found here.

Packages that will be used

using NLOptControl

Differential Equations

de=[:(-x1[j]^3+u1[j])]

Define and Configure the Problem:

n=define!(de;numStates=1,numControls=1,X0=[1.5],XF=[1.],XL=[NaN],XU=[NaN],CL=[NaN],CU=[NaN])
configure!(n,Nck=[20,3,3,3,3,3,3,3,3,3,3,20];(:finalTimeDV=>false),(:tf=>10000.0))

Objective Function

obj1=integrate!(n,n.r.x[:,1];C=0.5,(:variable=>:state),(:integrand=>:squared))
obj2=integrate!(n,n.r.u[:,1];C=0.5,(:variable=>:control),(:integrand=>:squared))
"Reference to nonlinear expression #166"

Optimize

optimize!(n);

Post Process

using PrettyPlots
allPlots(n)
0 2000 4000 6000 8000 10000 0 1 time (s) x1 mpc 0 2000 4000 6000 8000 10000 0 1 2 time (s) u1 mpc