HyperSensitive
This problem can be found here.
Packages that will be used
using NLOptControlDifferential Equations
de=[:(-x1[j]^3+u1[j])]Define and Configure the Problem:
n=define!(de;numStates=1,numControls=1,X0=[1.5],XF=[1.],XL=[NaN],XU=[NaN],CL=[NaN],CU=[NaN])
configure!(n,Nck=[20,3,3,3,3,3,3,3,3,3,3,20];(:finalTimeDV=>false),(:tf=>10000.0))Objective Function
obj1=integrate!(n,n.r.x[:,1];C=0.5,(:variable=>:state),(:integrand=>:squared))
obj2=integrate!(n,n.r.u[:,1];C=0.5,(:variable=>:control),(:integrand=>:squared))"Reference to nonlinear expression #166"Optimize
optimize!(n);Post Process
using PrettyPlots
allPlots(n)